

اختبار في مادة: الرياضيات / الشعبة: تسيير واقتصاد / بكالوريا 2018

الموضوع الثانى

التمرين الأول: (04 نقاط)

الجدول التالي يمثّل تطوّر عدد المتقاعدين من سنة 2009 إلى سنة 2014 بالجزائر. (الديوان الوطني للإحصائيات).

السنة	2009	2010	2011	2012	2013	2014
x_i رتبة السنة	1	2	3	4	5	6
عدد المتقاعدين y_i (بالملايين)	2,17	2,19	2,32	2,48	2,63	2,77

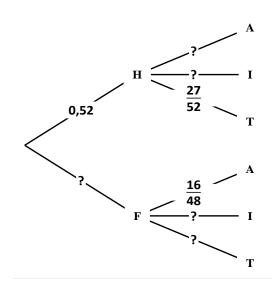
لكل سنة على محور الفواصل ($M_i(x_i; y_i)$ في معلم متعامد. (نأخذ كوحدة بيانية: 2cm لكل سنة على محور الفواصل و2cm كل مليون متقاعد على محور التراتيب).

- عيّن إحداثيي النقطة المتوسطة G ثم علّمها.
- 3) اكتب معادلة مستقيم الانحدار بالمربّعات الدّنيا.
- 4) نفرض أن تطوّر عدد المتقاعدين يبقى على هذه الوتيرة في السنوات الموالية.
 - أ. قدّر عدد المتقاعدين في الجزائر في سنة 2020.

ب. ابتداء من أيّ سنة يتعدّى عدد المتقاعدين في الجزائر 4 ملايين متقاعد.

التمرين الثاني: (04 نقاط)

تضُّم مؤسسة إنتاجية موظفين من الجنسين


F رجالا يرمز لهم بH و نساء يرمز لهن ب

منهم الإداريون "A" ، المهندسون "I" و العمال "T" . موزعين حسب الجدول المقابل:

يخضع الموظفون لفحص طبى دوري. نختار عشوائيا موظفا.

- P(H) = 0.52 أ. بيّن أنّ احتمال أن يكون الموظف رجلا هو \bullet (1 \bullet
 - . $P(F \cap I)$ و $P(H \cap T)$ احسب (2
 - 3) ما احتمال أن يكون الموظف مهندسا؟
 - 4) ما احتمال أن يكون الموظف رجلا علما أنه إداري؟

	الإداريون A	المهندسون I	العمال T
الرجال	12%	13%	27%
النساء	16%	12%	20%

اختبار في مادة: الرياضيات / الشعبة: تسيير واقتصاد / بكالوريا 2018

التمرين الثالث: (04 نقاط)

 $2u_{n+1}=u_n+6$ ، n عدد طبیعی المتتالیة العددیة المعرفة کما یلی: $u_0=-1$ و من أجل كل عدد طبیعی (u_n)

- $u_n < 6$ ، n عدد طبیعی أنه من أجل كل عدد التراجع أنه من أجل (1 برس اتجاه تغیر المتتالیة (u_n) و استنتج أنها متقاریة.
- $v_n = u_n 6$: n نضع من أجل كل عدد طبيعي (2 $v_n = v_n 6$ نضع من أجل كل عدد طبيعي أساسها $\frac{1}{2}$ يطلب حساب حدّها الأول v_n أ. بيّن أنّ v_n بدلالة v_n ثمّ احسب v_n بدلالة v_n بدلال
- $P_n = v_0 \times v_1 \times v_2 \times ... \times v_n$ و $S_n = u_0 + u_1 + u_2 + ... + u_n$ احسب بدلالة n ما يلي: (3

التمرين الرابع: (08 نقاط)

- . $g(x) = 1 + (1-x)e^{-x+1}$: $= [0; +\infty[$ المعرفة على $= [0; +\infty[$ بين أنه من أجل كل $= [0; +\infty[$ من $= [0; +\infty[$ لا يطلب حساب النهايات) ادرس اتجاه تغير الدالة $= [0; +\infty[$ ثم بيّن أنه من أجل كل $= [0; +\infty[$ من $= [0; +\infty[$ نام النهايات) ادرس اتجاه تغير الدالة $= [0; +\infty[$ ثم بيّن أنه من أجل كل $= [0; +\infty[$ ثم بيّن أنه من أجل كل $= [0; +\infty[$ ثم بيّن أنه من أجل كل $= [0; +\infty[$ ثم بيّن أنه من أجل كل $= [0; +\infty[$ ثم بيّن أنه من أجل كل $= [0; +\infty[$ ثم بيّن أنه من أجل كل $= [0; +\infty[$ ثم بيّن أنه من أجل كل $= [0; +\infty[$ ثم بيّن أنه من أجل كل $= [0; +\infty[$ ثم بيّن أنه من أجل كل $= [0; +\infty[$ ثم بيّن أنه من أجل كل $= [0; +\infty[$ ثم بيّن أنه من أجل كل $= [0; +\infty[$
 - $f\left(x
 ight)=x+xe^{-x+1}$:ب $[0;+\infty[$ المعرفة على المجال f المعرفة على المجال f المعرفة على المجال $f\left(0;\overrightarrow{i},\overrightarrow{j}\right)$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس $\left(C_{f}\right)$ و
 - (C_f) مقارب للمنحني y=x مقارب للمنحني (Δ) فو المعادلة Δ مقارب للمنحني . Δ المستقيم (Δ) بالنسبة إلى المستقيم (Δ) بالنسبة المستقيم (Δ) بالنسبة المستقيم (Δ) بالنسبة (Δ) بالنسبة المستقيم (Δ) بالنسبة (Δ) بالنسبة
 - . f التغيرات للدالة f'(x) = g(x) : $[0; +\infty[$ للدالة x من المجال x من المجال عندالة المجال أنّه من أجل كل x من المجال x من المجال المجال أنّه من أجل كل x من المجال x م
 - $3,75 < \alpha < 3,77$: حيث α حيث f(x) = 4 تقبل حلّا وحيدا (3
 - (C_f) و (Δ) ، (T) اكتب معادلة المماس (T) للمنحنى (C_f) عند النقطة ذات الفاصلة (T) ثم ارسم
 - $.F(x) = \frac{1}{2}x^2 (x+1)e^{-x+1}$: كما يلي: $[0;+\infty[$ كما المعرّفة على المعرّفة على المعرّفة على المجال F على المجال F على المجال أنّ الدالة F هي دالة أصلية للدالة f على المجال F على المجال أنّ الدالة أصلية للدالة أصلية للدالة أصلية الدالة الدالة أصلية الدالة أصلية الدالة أصلية الدالة الدالة
 - f(x)dx ب. أوجد القيمة المضبوطة للعدد $\int_{1}^{4} f(x)dx$ ، ثم أعط تفسيرا هندسيا لهذا العدد.
 - نمذج الكلفة الهامشية C_m لإنتاج كميّة q (مقدرة بآلاف الوحدات) حيث $0 \leq q \leq 7$ بالدالة q المعرّفة سابقا أي: $C_m(q) = f(q)$ حيث: $C_m(q) = f(q)$. (الكلفة الهامشية مقدّرة بملايين الدنانير)
 - أ. ما هي كمية المنتوج التي من أجلها لا تتجاوز الكلفة الهامشية 4 ملايين دينار ؟
 - ب. نذكّر أنّ دالة الكلفة الإجمالية C_T هي دالة أصلية لدالة الكلفة الهامشية. احسب القيمة المتوسطة للكلفة الإجمالية عندما تنتج الشركة ما بين 1000 وحدة و 4000 وحدة.

العلامة		/ 12th c ** to 3 1 - M - 1**
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		التمرين الأول: (04 نقاط)
01	1	1) تمثيل السحابة
	0.5	$\frac{-}{x} = \frac{1+2+3+4+5+6}{6} = 3.5$ (2
01	0.5	$\frac{1}{y} = \frac{2.17 + 2.19 + 2.32 + 2.48 + 2.63 + 2.77}{6} = 2.43$
		G(3.5; 2.43) ثم تعليم النقطة المتوسطة
		تقبل النتائج القريبة جدا من هذه النتائج .
		: مستقیم الانحدار بمربعات الدنیا هو $y = 0.128x + 1.982$ لأن
01	0.5×2	$a = \frac{\sum_{i=1}^{6} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{6} (x_i - \overline{x})^2} = \frac{2.24}{17.5} \approx 0.128$
		$b = \overline{y} - a\overline{x} = 2.43 - 0.128 \times 3.5 = 1.982$
		تقبل النتائج القريبة جدا من هذه النتائج .
	0.5	منه عدد المتقاعدين هو $x_i = 12$ منه عدد المتقاعدين هو -1
		$y = 0.128 \times 12 + 1.982$
01	0.5	منه 3.518 مليون متقاعد في سنة 2020 .
		x=16 منه $0.128x+1.982>4$ ب
		التمرين الثاني (04 نقاط)
	0.25	P(H) = 0.12 + 0.13 + 0.27 = 0.52 - 10
01		، $P_H(A) = \frac{3}{13}$ ، $P(F) = 0.16 + 0.12 + 0.20 = 0.48$: الشجرة : - الشجرة - باتمام الشجرة : - باتمام المام المتام المتحدد : - باتم
	0.75	
		$P_{H}\left(I\right) = \frac{1}{4}$
		$P_{F}(T) = \frac{5}{12} g P_{F}(I) = \frac{1}{4} G_{F}(A) = \frac{1}{3} \qquad P_{H}(T) = \frac{27}{52} g$
01	0.5×2	$P(F \cap I) = 0.48 \times \frac{1}{4} = 0.12$ $P(H \cap T) = 0.52 \times \frac{27}{52} = 0.27$ (2)

الإجابة النموذجية لموضوع اختبار مادة: الرياضيات/ الشعبة: تسيير واقتصاد/ بكالوريا: 2018

01	1	$P(I) = P(I \cap H) + P(I \cap F) = 0.52 \times \frac{1}{4} + 0.48 \times \frac{1}{4} = 0.25$ (3)			
01	1	$P_A(H) = \frac{P(H \cap A)}{P(A)} = \frac{0.52 \times \frac{3}{13}}{0.52 \times \frac{3}{13} + 0.48 \times \frac{1}{3}} = \frac{3}{7} \approx 0.43 \text{ (4)}$			
		التمرين الثالث: (04 نقاط)			
	1	$u_n < 6$ ، n أ) البرهان بالتراجع أنه من اجل كل عدد طبيعي أنه $u_n < 6$ أ			
1.5	0.25	(u_n) دراسة اتجاه تغير المتتالية (u_n)			
	0.25	(u_n) متقاربة (u_n) متقاربة			
	0.5	$v_{n+1} = \frac{1}{2}v_n$: متتالیة هندسیة (v_n) متتالیة هندسیة (v_n) متتالیة هندسیة			
	0.25	$v_0 = -7$			
1.5	0.5	$v_n = -7 \left(\frac{1}{2}\right)^n$: n بدلالة v_n بدلالة v_n			
	0.25	$\lim_{n \to +\infty} u_n = 6$			
		$: P_n$ و S_n حساب (3			
01	0.75	$S_n = 7\left(\frac{1}{2}\right)^n + 6n - 8$			
	0.25	$P_n = (-7)^{n+1} \left(\frac{1}{2}\right)^{\frac{n(n+1)}{2}}$			
التمرين الرابع (08 نقاط)					
		(I			
	0.25	$g'(x) = (x-2)e^{-x+1}$: فإن $x \in [0; +\infty[$ من أجل (1			
0.75	0.25	. دالة متناقصة تماما $x \in [0;2]$ دالة متناقصة تماما $x \in [0;2]$			
	0.25	من أجل $x\in [2;+\infty[$ فإن g دالة متزايدة تماما.			
	3.20	$g(x)>0$ يما أن $g(2)=1-rac{1}{e}>0$ قيمة حدية صغرى للدالة g إذن			

الإجابة النموذجية لموضوع اختبار مادة: الرياضيات/ الشعبة: تسيير واقتصاد/ بكالوريا: 2018

2	0.5	$\lim_{t \to \infty} f(x) = \lim_{t \to \infty} \int_{-t}^{t} f(t) dt$
2	0.5	$\lim_{x \to +\infty} f(x) = +\infty -1 $ (1
	0.5×2	$+\infty$ بجوار (C_f) بجوار المستقيم (Δ) بجوار $\lim_{x \to +\infty} \left[f(x) - x \right] = \lim_{x \to +\infty} \frac{x}{e^x} e = 0$
	0.5	(Δ) يقع فوق المستقيم $f(x)-x=xe^{-x+1}$ بي فإن $f(x)-x=xe^{-x+1}$
	0.5	$f'(x) = g(x) : x \in [0; +\infty[$ تبیان أن من أجل (2
01	0.5	جدول التغيرات
0.75	0.75	$f(3.75) \approx 3.98$ و $[3.75;3.77]$ و $f(3)$
0.73	0.75	$f(3.77) \approx 4.01$.
1 75	1	(T): y = x+1 معادلة المماس (4
1.75	0.25×3	$\left(C_f ight)$ و المنحنى (Δ) و المنحنى رسم المماس ، المستقيم
	0.25	$[0;+\infty[$ على المجال F دالة أصلية للدالة f على المجال F
1	0.5	$\int_{1}^{4} f(x)dx = [F(x)]^{4} = \frac{19}{2} - 5e^{-3} - \frac{1}{2}$
1	0.25	$\left(\mathcal{C}_{f}\right)$ تفسير الهندسي للعدد $\int\limits_{1}^{4}f(x)dx$ هو مساحة الحيز المستو المحدد بالمنحنى
		y=0 و المستقيمات التي معادلاتها $x=1, x=4$ و $y=0$
	0.5	$x \in [0; \alpha[$ معناه $f(x) < 4$ أ- لدينا (6
0.75		$q\in igl[0;lphaigl[$ معناه $C_{_m}(q)<4$
	0.25	ب- القيمة المتوسطة للكلفة الإجمالية ما بين 1 وحدة و 4 وحدات .
		$\mu = \frac{1}{4-1} \int_{1}^{4} f(x) dx = \frac{19}{6} - \frac{5e^{-3}}{3}$